巢湖学院学报 ›› 2021, Vol. 23 ›› Issue (6): 122-127.doi: 10.12152/j.issn.1672-2868.2021.06.017

• 工程与技术 • 上一篇    下一篇

基于改进视觉注意力机制的道路裂纹识别

戴前维,谢宇,徐佳庆,等:合肥学院 先进制造工程学院   

  1. 合肥学院 先进制造工程学院,安徽 合肥 230601
  • 收稿日期:2021-10-25 出版日期:2021-11-25 发布日期:2022-03-07
  • 作者简介:戴前维(1997—),男,安徽芜湖人,合肥学院先进制造工程学院硕士研究生,主要从事机器学习、图像处理研究。
  • 基金资助:
    国家自然科学基金项目(项目编号:41775025)

Road Crack Identification Based on Improved Visual Attention Mechanism

DAI Qian-wei, XIE Yu, XU Jia-qing, et al: School of Advanced Manufacturing Engineering, Hefei University   

  1. School of Advanced Manufacturing Engineering, Hefei University, Hefei Anhui 230601
  • Received:2021-10-25 Online:2021-11-25 Published:2022-03-07

摘要: 针对道路裂纹图像识别准确率低的问题,提出了一种基于视觉注意力机制的道路裂纹识别方法。首先人工将源图像分类为无裂纹、纵向裂纹、横向裂纹、网格裂纹。再通过对裂纹图像进行Gabor滤波获得相应纹理信息,对获得的纹理图像进行K-means聚类算法实现图像分割。然后结合基于注意力机制的模型SRMResnet(Style-based Recalibration Module Of Resnet)进行分类识别。最后将提出的方法与几种常见基于注意力机制的模型在4类图像上进行对比测试。结果显示,基于改进视觉注意力机制的道路裂纹识别对分类能力的准确率有较大提高,能够高效识别道路裂纹,最终的识别准确率可以达到0.966。

关键词: 注意力机制, Gabor滤波, K-means聚类算法

Abstract: Aiming at the problem of low accuracy of road crack identification, a road crack identification method based on visual attention mechanism is proposed. Firstly, the source images are manually classified into non-crack, longitudinal crack, transverse crack, and grid crack. Then the corresponding texture information is obtained by Gabor filtering of the crack image, and the obtained texture image is segmented by K-means clustering algorithm. Then the attention-mechanism-based model SRM-Resnet (Style-based Recalibration Module Of Resnet) is used for classification and recognition. Finally, the proposed method is compared with several common attention-based models on four types of images. The results show that the road crack identification based on the improved visual attention mechanism proposed in this paper has greatly improved the accuracy of classification ability, and can effectively identify road cracks. The final identification accuracy can reach 0.966.

Key words: attention mechanism, Gabor filter, K-means clustering algorithm

中图分类号: 

  • TP391