巢湖学院学报 ›› 2020, Vol. 22 ›› Issue (1): 54-61.doi: 10.12152/j.issn.1672-2868.2020.01.008

• 经济与管理 • 上一篇    下一篇

我国政府 R&D 资助效率及其影响因素分析

研究基于我国 30 个省市自治区(西藏除外) 2009 年以来的研发投入产出基本面数据,运用超效率 DEA 模型测算了各地区的政府 R&D 资助效率,结果表明,我国政府 R&D 资助效率存在着显著的省际差异,这种差异性既有资助规模的原因,也有管理水平的原因;接着为了进一步揭示这种差异性的深层次原因,运用 Tobit 模型对政府 R&D 资助效率差异性的政府层面、企业层面原因进行实证分析,结果表明,政府 R&D 资助率、R&D 资助政策的稳定性、政府 R&D 经费分配结构、R&D 人员学历结构及 R&D 投入强度等因素均对政府 R&D 资助效率有显著影响。最后在此基础上,针对中国政府 R&D 资助效率的提高提出相应政策建议。
  

  1. 安徽大学 经济学院,安徽 合肥 230601
  • 收稿日期:2019-11-06 出版日期:2020-01-25 发布日期:2020-04-09
  • 作者简介:王世芳(1990-),女,河南平顶山人,安徽大学经济学院硕士研究生,主要从事宏观经济管理、科技创新与管理研究。
  • 基金资助:
    安徽省科技创新战略与软科学重大研究专项项目(项目编号:1706a02020046)

Analysis of the Efficiency of Chinese Government R&D Funding and Its Influencing Factors

Based on the fundamental data of R&D input and output in China's 30 provinces and autonomous regions (excluding Tibet) since 2009, the super efficient DEA model is used to measure the efficiency of government R&D funding in various regions. The results show that there are significant inter-provincial differences in efficiency of Chinese government R&D funding for reasons of funding scale and management. Then, in order to further reveal the deep-seated reasons for this difference, the Tobit model is used to measure the efficiency of government R&D funding. Empirical analysis of the reasons at the enterprise level shows that the government R&D funding rate, the stability of the R&D funding policy, the government R&D funding allocation structure, the R&D personnel qualification structure and the R&D investment intensity all have significant effects on the government R&D funding efficiency. Finally, on this basis, the corresponding policy recommendations are proposed for the improvement of the efficiency of Chinese government R&D funding.#br#   

  1. School of Economics, Anhui University, Hefei Anhui 230601
  • Received:2019-11-06 Online:2020-01-25 Published:2020-04-09

摘要: 研究基于我国 30 个省市自治区(西藏除外) 2009 年以来的研发投入产出基本面数据,运用超效率 DEA 模型测算了各地区的政府 R&D 资助效率,结果表明,我国政府 R&D 资助效率存在着显著的省际差异,这种差异性既有资助规模的原因,也有管理水平的原因;接着为了进一步揭示这种差异性的深层次原因,运用 Tobit 模型对政府 R&D 资助效率差异性的政府层面、企业层面原因进行实证分析,结果表明,政府 R&D 资助率、R&D 资助政策的稳定性、政府 R&D 经费分配结构、R&D 人员学历结构及 R&D 投入强度等因素均对政府 R&D 资助效率有显著影响。最后在此基础上,针对中国政府 R&D 资助效率的提高提出相应政策建议。

关键词: 政府 R&, D 资助;省际差异;超效率 DEA 模型;Tobit 模型

Abstract: Based on the fundamental data of R&D input and output in China's 30 provinces and autonomous regions (excluding Tibet) since 2009, the super efficient DEA model is used to measure the efficiency of government R&D funding in various regions. The results show that there are significant inter-provincial differences in efficiency of Chinese government R&D funding for reasons of funding scale and management. Then, in order to further reveal the deep-seated reasons for this difference, the Tobit model is used to measure the efficiency of government R&D funding. Empirical analysis of the reasons at the enterprise level shows that the government R&D funding rate, the stability of the R&D funding policy, the government R&D funding allocation structure, the R&D personnel qualification structure and the R&D investment intensity all have significant effects on the government R&D funding efficiency. Finally, on this basis, the corresponding policy recommendations are proposed for the improvement of the efficiency of Chinese government R&D funding.

Key words: government R&D funding, inter-provincial differences, super efficient DEA model, Tobit model

中图分类号: 

  • F204