巢湖学院学报 ›› 2024, Vol. 26 ›› Issue (6): 94-101.doi: 10.12152/j.issn.1672-2868.2024.06.012

• 工程与技术 • 上一篇    

基于加权残差协同图约束的高光谱图像解混

刘雪松:1.安徽新华学院 电子工程学院,2.南昌工程学院 信息工程学院;姚玲,彭霞:安徽新华学院 电子工程学院;彭天亮:南昌工程学院 信息工程学院   

  • 收稿日期:2024-05-13 出版日期:2024-11-25 发布日期:2025-04-02
  • 作者简介:刘雪松(1994—),男,安徽合肥人,安徽新华学院电子工程学院/南昌工程学院信息工程学院讲师,主要从事数字信号处理及图像处理研究。
  • 基金资助:
    国家自然科学基金项目(项目编号:61701215);国家级大学生创新训练项目(项目编号:S202212216095);安徽新华学院校级科研项目(项目编号:2022zr013)

Hyperspectral Image Unmixing Based on Weighted Residual Synergetic Graph Constraint

LIU Xue-song:1.School of Electronic Engineering, Anhui Xinhua University,2.School of Information Engineering, Nanchang Institute of Technology;YAO ling,PENG Xia:School of Electronic Engineering, Anhui Xinhua University;PENG Tian-liang:School of Information Engineering, Nanchang Institute of Technology   

  • Received:2024-05-13 Online:2024-11-25 Published:2025-04-02

摘要: 文章在稀疏图约束NMF的基础上提出了一种基于加权残差协同图约束非负矩阵分解的高光谱解混算法(Weighted residual synergetic graph constraint NMF,WRGNMF)。在标准的NMF(Nonnegative Matrix Factorization)算法中,引入一个剩余加权机制,该策略是根据加权因子来处理残差中的值,为解混过程中每个原始像素与重构像素之间的重构误差提供适当的权值,让数据拟合更加精确,提高抗噪性能。同时,为了充分利用光谱图像的空间信息,用l1范数来加强丰度矩阵的稀疏性,用图正则化来保持数据结构的亲和性。模拟和真实实验证实了该算法的有效性,提高解混精度的同时,对噪声更加鲁棒。

关键词: 加权残差, 图正则化, 稀疏约束, NMF, 高光谱解混

Abstract: This paper proposes a hyperspectral unmixing algorithm based on the weighted residual synergetic graph constraint NMF(WRGNMF), building upon the foundation of sparse graph constraint NMF. In the standard NMF algorithm, a residual weighting mechanism is introduced. This strategy processes the values in the residual according to the weighting factor, providing appropriate weights for the reconstruction errors between each original pixel and the reconstructed pixel during the unmixing process, thereby enhancing data fitting accuracy and improving noise resistance. Simultaneously, to fully utilize the spatial information of spectral images, the l1 norm is employed to enhance the sparsity of the abundance matrix, and graph regularization is used to maintain the affinity of the data structure. Both simulated and real experiments demonstrate the effectiveness of the proposed algorithm, which not only improves unmixing accuracy but also exhibits greater robustness to noise.

Key words: weighted residual, graph regularization, sparse constraint, NMF, hyperspectral unmixing

中图分类号: 

  • TP751