巢湖学院学报 ›› 2024, Vol. 26 ›› Issue (6): 87-93+128.doi: 10.12152/j.issn.1672-2868.2024.06.011

• 工程与技术 • 上一篇    

基于DGA的NRBO-XGBoost变压器故障诊断方法

1.阮义,方愿捷:巢湖学院 电子工程学院;2.张浩天:安徽工程大学 电气工程学院;3.孙建,刘翔:国网安徽省电力有限公司电力科学研究院;4.夏亮亮:铱基电气渊上海冤有限公司;5.孙阿欢:合肥开关厂有限公司   

  • 收稿日期:2024-08-25 出版日期:2024-11-25 发布日期:2025-04-02
  • 作者简介:阮义(1996—),男,安徽合肥人,巢湖学院电子工程学院讲师,博士,主要从事电力设备故障诊断和状态监测研究。
  • 基金资助:
    国家自然科学基金青年基金项目(项目编号:62303076);安徽省高校自然科学研究项目(项目编号:2023AH052109、2023AH052105)

NRBO-XGBoost Transformer Fault Diagnosis Method Based on DGA

RUAN Yi,FANG Yuan-jie:School of Electronic Engineering, Chaohu University;2.ZHANG Hao-tian:School of Electrical Engineering, Anhui Polytechnic University;3.SUN Jian,LIU Xiang:Electric Power Research Institute, State Grid Anhui Electric Power Co., Ltd.;4.XIA Liang-liang:EIG Electric (Shanghai) Co., Ltd.;5.SUN A-huan:Hefei Switch Factory Co., Ltd.   

  • Received:2024-08-25 Online:2024-11-25 Published:2025-04-02

摘要: 为提高基于机器学习的变压器故障诊断精度,提出了基于油中溶解气体分析(Dissolved Gas Analysis,DGA)的NRBO-XGBoost变压器故障诊断方法。选择极度梯度提升决策树(Extreme Gradient Boosting,XGBoost)模型,结合牛顿-拉夫逊算法(Newton-Raphson-based optimizer,NRBO),通过迭代过程对模型进行寻找最优参数设置,每一轮迭代都会评估当前解决方案的性能,使用找到的最优参数重新训练XGBoost模型,根据比较优化前后的结果,可以明显看到模型性能的提升。通过算例分析对建立的NRBO-XGBoost方法性能进行评估,验证了所提方法对变压器故障诊断的有效性,且收敛性较好,精度较高。

关键词: 变压器, 故障诊断, 牛顿-拉夫逊算法, 极度梯度提升决策树

Abstract: To enhance the accuracy of transformer fault diagnosis based on machine learning, a transformer fault diagnosis method using NRBO-XGBoost based on Dissolved Gas Analysis (DGA) is proposed. The Extreme Gradient Boosting (XGBoost) model is selected. The Newton-Raphson-based optimizer (NRBO) is combined with XGBoost to iteratively search for the optimal model parameters. In each iteration, the performance of the current solution is evaluated, and the XGBoost model is retrained using the optimal parameters obtained. A significant improvement in model performance is observed by comparing the results before and after optimization. The performance of the NRBO-XGBoost method is evaluated through a case study, demonstrating the effectiveness of the proposed method for transformer fault diagnosis, with good convergence and high accuracy.

Key words: transformer, fault diagnosis, Newton-Raphson-based optimizer, Extreme Gradient Boosting

中图分类号: 

  • TM411