巢湖学院学报 ›› 2021, Vol. 23 ›› Issue (3): 38-45.doi: 10.12152/j.issn.1672-2868.2021.03.005

• 数理科学 • 上一篇    下一篇

Lévy驱动的一类分数阶随机微分方程的稳定性

侯婷婷,张辉:安徽师范大学皖江学院 电子工程系   

  1. 安徽师范大学皖江学院 电子工程系,安徽 芜湖 241000
  • 收稿日期:2021-04-14 出版日期:2021-05-25 发布日期:2021-08-11
  • 作者简介:侯婷婷(1988—),女,河南焦作人,安徽师范大学皖江学院电子工程系讲师,主要从事随机微分方程研究。
  • 基金资助:
    高校优秀青年骨干教师国内访学研修项目(项目编号:gxgnfx2021173);安徽省高校自然科学研究项目(项目编号:KJ2020A1192)

The Stability of a Class Stochastic Fractional Differential Equations Driven by Lévy Noise

HOU Ting-ting, ZHANG Hui:Department of Electronic Engineering, Wanjiang College of Anhui Normal University   

  1. Department of Electronic Engineering, Wanjiang College of Anhui Normal University, Wuhu Anhui 241000
  • Received:2021-04-14 Online:2021-05-25 Published:2021-08-11

摘要: 文章讨论了一类由Lévy噪声扰动的分数阶中立型随机泛函混杂微分方程解的稳定性,利用Lyapunov泛函、非负半鞅收敛定理以及M-矩阵的理论证明了方程的解在一般衰减速度下的的几乎必然稳定性,并给出了任意状态下各系数的上界。

关键词: 分数阶随机微分方程, 半鞅收敛定理, Lévy噪声

Abstract: In this paper, we discuss the stability with general decay rate of neutral stochastic fractional hybrid differential equations driven by Lévy noise. By using Lyapunov function, nonnegative semi-martingale convergence theorem and the theory of M-matrix, we propose sufficient conditions for the almost sure stability. We also give an upper bound of each coefficient at any state.

Key words: stochastic fractional differential equations, nonnegative semi-martingale convergence, Lévy noise

中图分类号: 

  • O211