巢湖学院学报 ›› 2021, Vol. 23 ›› Issue (3): 38-45.doi: 10.12152/j.issn.1672-2868.2021.03.005
• 数理科学 • 上一篇 下一篇
侯婷婷,张辉:安徽师范大学皖江学院 电子工程系
收稿日期:
出版日期:
发布日期:
作者简介:
基金资助:
HOU Ting-ting, ZHANG Hui:Department of Electronic Engineering, Wanjiang College of Anhui Normal University
Received:
Online:
Published:
摘要: 文章讨论了一类由Lévy噪声扰动的分数阶中立型随机泛函混杂微分方程解的稳定性,利用Lyapunov泛函、非负半鞅收敛定理以及M-矩阵的理论证明了方程的解在一般衰减速度下的的几乎必然稳定性,并给出了任意状态下各系数的上界。
关键词: 分数阶随机微分方程, 半鞅收敛定理, Lévy噪声
Abstract: In this paper, we discuss the stability with general decay rate of neutral stochastic fractional hybrid differential equations driven by Lévy noise. By using Lyapunov function, nonnegative semi-martingale convergence theorem and the theory of M-matrix, we propose sufficient conditions for the almost sure stability. We also give an upper bound of each coefficient at any state.
Key words: stochastic fractional differential equations, nonnegative semi-martingale convergence, Lévy noise
中图分类号:
侯婷婷, 张辉. Lévy驱动的一类分数阶随机微分方程的稳定性[J]. 巢湖学院学报, 2021, 23(3): 38-45.
HOU Ting-ting, ZHANG Hui. The Stability of a Class Stochastic Fractional Differential Equations Driven by Lévy Noise[J]. Journal of Chaohu University, 2021, 23(3): 38-45.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: http://xb.chu.edu.cn/CN/10.12152/j.issn.1672-2868.2021.03.005
http://xb.chu.edu.cn/CN/Y2021/V23/I3/38
Cited