巢湖学院学报 ›› 2020, Vol. 22 ›› Issue (6): 61-64.doi: 10.12152/j.issn.1672-2868.2020.06.008

• 数理科学 • 上一篇    下一篇

关于奇异鞍点问题的一类块对角预条件子的分析

王芳:安徽外国语学院 信息与数学学院   

  1. 安徽外国语学院 信息与数学学院,安徽 合肥 231201
  • 收稿日期:2020-08-06 出版日期:2020-11-25 发布日期:2021-02-02
  • 作者简介:王芳(1987—),女,安徽宿州人,安徽外国语学院信息与数学学院讲师,主要从事计算机与复杂系统控制研究。
  • 基金资助:
    安徽省教育厅自然科学研究项目(项目编号:KJ2018A0610、KJ2019A0875);安徽外国语学院校级科研项目(项目编号:Awky2020025)

Analysis on a Class of Block Diagonal Preconditioners for Singular Saddle Point Problems

WANG Fang:School of Information and Mathematics, Anhui International Studies University   

  1. School of Information and Mathematics, Anhui International Studies University,Hefei Anhui 231201
  • Received:2020-08-06 Online:2020-11-25 Published:2021-02-02

摘要: 为求解奇异线性鞍点问题,应用正定对称块对角预条件子,对奇异鞍点线性系统(1)进行预条件处理,讨论了块对角预条件奇异线性系统矩阵的特征值分布,得到预条件系统矩阵的非零特征值的分布范围及特征值1和0的代数重数。发现此预条件子满足恰当分裂,进一步得到了预条件GMRES算法和预条件TFQMR算法求解此块对角预条件奇异线性系统的收敛性。数值实验表明:预条件GMRES算法和预条件TFQMR算法比直接使用GMRES算法和TFQMR算法有明显的优越性。

关键词: 块对角预条件子, 奇异鞍点问题, 特征值

Abstract: In order to solve the singular linear saddle point problem, the positive definite symmetric block diagonal preconditioner is used for the singular saddle point linear system (1). The eigenvalue distribution of the matrix of the block diagonal preconditioned singular linear system is discussed. The distribution range of the nonzero eigenvalues of the preconditioned system matrix and the algebraic multiplicity of the eigenvalues 1 and 0 are obtained. We find that the preconditioner satisfies the proper splitting, and further obtain the convergence of the preconditioned GMRES algorithm and the preconditioned TFQMR algorithm for solving this block diagonal preconditioned singular linear system. Numerical experiments show that the preconditioned GMRES algorithm and the preconditioned TFQMR algorithm have obvious advantages over the GMRES algorithm and TFQMR algorithm without preconditioning.

Key words: block diagonal preconditioner, singular saddle point problem, eigenvalue

中图分类号: 

  • O151.2